The visible light source was obtained using a 420-nm cutoff filte

Results and discussion The XRD patterns of the CdS(4)-TiO2 NWs were acquired as shown in Figure 1. The X-ray diffraction pattern of the CdS QDs on TiO2 NWs proves the existence of CdS by its three characteristic peaks (2θ = 26.4° (111), 43.9° (220), and 51.9° (311); JCPDS card no.: 65-2887), and the

other diffraction peaks attribute to the anatase phase TiO2 NWs (JCPDS card no.: 21-1272 ) and Ti foil substrate (JCPDS card no.: selleck chemical 44-1294). Figure 1 XRD patterns of the as-prepared heteronanostructure of CdS QDs on TiO 2 NWs. The SEM images of pure TiO2 NWs and CdS(4,6,10)-TiO2 NWs and the TEM and HRTEM images of CdS(4)-TiO2 NWs are presented in Figure 2. The surface of titanium foil is etched and covered with TiO2 NWs with diameter of about 15 nm. Moreover, TiO2 nanowires possess smooth surface (Figure 2a). The SEM image displays the membrane formed by overlapping and interpenetrating of the TiO2 NWs. When the deposition cycle NVP-AUY922 price number is four, the surfaces of the TiO2 NWs become rougher than those of the pure TiO2 NWs, indicating that the diameters of the CdS particles are in the nanoscale range (Figure 2b). For sample CdS(6)-TiO2

NWs, the surfaces of the TiO2 NWs are thoroughly covered by particles and rougher than those of the CdS(4)-TiO2 NWs (Figure 2c). With the increase of deposition cycle number to ten, the morphologies of the TiO2 NWs for the CdS(10)-TiO2 https://www.selleckchem.com/products/napabucasin.html NWs are kept almost Suplatast tosilate the same with those of the CdS(6)-TiO2 NWs, while the diameters of the TiO2 NWs of CdS(10)-TiO2 seem to be larger than those of CdS(6)-TiO2, which indicates that more CdS nanoparticles

are deposited on the TiO2 NW surfaces (Figure 2d). To further investigate the deposition, morphology, and size of CdS, the TEM and HRTEM images of the CdS(4)-TiO2 NWs are shown in Figure 2e,f. CdS QDs with sizes about 3 to 6 nm are distributed on TiO2 NW surfaces, making the TiO2 NW surface rough. This can be further confirmed by the lattice fringes (Figure 2f) of the circular area marked in Figure 2e. The interplanar spacings are 0.35 and 0.34 nm (Figure 2f), consistent with the (101) plane of anatase TiO2 and (111) plane of CdS. Figure 2 SEM, TEM, and HRTEM images of the TiO 2 NWs and CdS(4,6,10)-TiO 2 NWs. (a) SEM image of pure TiO2 NWs. (b) SEM image of CdS(4)-TiO2 NWs. (c) SEM image of CdS(6)-TiO2 NWs. (d) SEM image of CdS(10)-TiO2 NWs. (e) TEM image of CdS(4)-TiO2 NWs. (f) HRTEM lattice fringes of CdS(4)-TiO2 NWs. In order to study the optical response of the CdS QD-sensitized TiO2 NW composites, UV-vis absorption spectra for samples of pure TiO2 NWs and CdS(i)-TiO2 NWs (i = 2,4,6) were shown in Figure 3a. Because pure TiO2 NW absorption is mainly UV, no significant absorbance for visible light could be seen, which is consistent with its large energy gap.

Comments are closed.