The cell cycle assay was performed through tagging the DNA with t

The cell cycle assay was performed through tagging the DNA with the PI dye as explained in “Materials and Methods”. M14 cells were plated in 6-well tissue culture plates. The cells were induced with compound V (10 μM) and the standard HU-331 (10 μM) and analyzed on a FACScan instrument using CELLQuestPRO software after time intervals of 24 h and 72 h. Cell cycle phases were compared in treated and untreated samples. No effect for either HU-331 or V was observed on cell cycle distribution of melanoma cells (data not shown). Intracellular pathway involvement Evasion from apoptosis is one of the hallmarks of

human cancers contributing to tumor formation and treatment resistance. The alterations in apoptosis signaling pathway often occur in drug-resistant cancer cells. In particular, defective apoptosis signaling may be caused by an increase in content of anti-apoptotic Osimertinib ic50 molecules and/or by a decreased content or impaired function of pro-apoptotic proteins. Thus, identification of novel substances for overcoming the drug resistance has gained much attention in cancer therapy. The drug resistance of cancer cells is Small molecule library screening a complex phenomenon comprising different intracellular processes. It was described for doxorubicin that short-term-treated CEM cells gradually developed drug

resistance. In particular, caspases activation, and XIAP and PARP cleavage were blocked. Thereafter, we evaluated the effect of the active Clostridium perfringens alpha toxin apoptotic concentrations on expression of X-linked Inhibitor of Apoptosis Protein (XIAP) and Poly (ADP-ribose) polymerase (PARP) proteins. Cells were treated with V and HU-331 at 10 μM for 24 h and then the expression of XIAP and cleavage of PARP were analyzed by western blotting. Results in Figure 5 show that apoptotic effect of V was due

to PARP cleavage that leads to inactivation of this protein, importantly involved in DNA repair. No effect on PARP cleavage was observed with HU-331 treatment. We also showed (Figure 6) that V was able to abolish XIAP protein levels whereas a little effect was observed in reduction of XIAP expression after HU-331 treatment. Figure 5 Effect of HU compounds on intracellular ROS generation at early time points in M14 cells. Cells were treated with V and HU331 for 30 min and then intensity of fluorescence of positive cells to DCFH-DA was analyzed by flow cytometry (FL-1channel). Results are representative of three experiments performed in triplicate. MFI:mean fluorescence intensity. Figure 6 Western blotting analysis of PARP cleavage and XIAP protein expression after incubation with HU-331 and V(10 μM) for 24 hours. Blots are representative of three different experiments. ROS involvement The quinoid anticancer agents undergo enzymatic reduction via one or two electrons to give the corresponding semiquinone radical or hydroquinone. Under aerobic conditions the semiquinone radical anion can give its extra electron to molecular oxygen to give the parent quinone and superoxide radical anion.

Comments are closed.