pyogenes (17), S agalactiae (9), and S pneumoniae (8) Of these

pyogenes (17), S. CX-5461 research buy agalactiae (9), and S. pneumoniae (8). Of these, the majority (50%) was homologous with S. pyogenes, likely reflecting the close relationship between these two species. More specifically, 9 of the 17 S. pyogenes virulence factors homologous to S. canis were categorized as either exoenzymes or complement proteases. These gene products damage tissue, and may

contribute to necrotizing fasciitis. When considering all 291 of the virulence factors homologous to S. canis, there were only three additional genes with similar categorization, two of these homologous to S. pneumoniae. Consequently, it appears that several genes possibly involved in necrotizing fasciitis GSK872 ic50 are shared between S. canis and S. pyogenes. In contrast, S. canis CDSs were not homologous with genes producing pyrogenic exotoxins associated with toxic shock syndrome. However, S. canis possessed two other streptoccocal toxin-producing genes: streptolysin O (SLO) (S. pyogenes) and CAMP factor (S. agalactiae) [27, 28]. Two S. canis genes were homologous to a well-characterized S. pyogenes GSK126 concentration virulence factor, the M protein (emm18), which aids in antiphagocytosis, adherence, and cellular invasion [29]. However, unlike S. pyogenes, these genes were not located within a contiguous 35-gene pathogenicity island that is found in all currently genome sequenced strains of S. pyogenes[30]. A BLASTn search of the NCBI nr database showed SCAZ3_01465 to be homologous

with the gene SPASc from

S. canis[31] (accession number: FJ594772). Global nucleotide sequence alignment showed these sequences to have 87.7% identity. Yang et al.[31] showed experimentally that SPASc was a new protective antigen, however they did not report the strain ID or isolation source. For SCAZ3_11010, a BLASTn search of the NCBI nr database returned no hits. However, a BLASTp search returned numerous hits and the gene with the most sequence similarity was an emm-like cell surface protein CspZ.2 of Streptococcus equi subsp. zooepidemicus ATCC 35246 (31% identity, 48% coverage). Neither SCAZ3_01465 nor SCAZ3_11010 were homologous with the S. canis emm gene type stG1389 (accession number EU195120) reported from one human and two canine sources [22]. These findings confirm previous studies showing that some S. canis isolates can possess M like proteins [18, 22, 23] and additionally show that a diversity of M like proteins is possible for S. canis strains. S. canis also possessed the nine gene sag operon (sagABCDEFGHI) responsible for the production of streptolysin S (SLS) [32]. Both SLS and SLO are toxins that lyse mammalian erythrocytes [33], and the toxicity of SLS has been shown to contribute to necrotizing fasciitis [34, 35]. Furthermore, it has been suggested that SLS interacts with numerous additional virulence factors to accelerate necrosis [36]. These factors include SLO, the M protein, and proteases. Genes for all these factors can be present in the S. canis genome.

Comments are closed.