Nevertheless, current knowledge (both laboratory observations and
theoretical analyses) does not justify any assumptions regarding their interaction with bacteriophages. Some of the above surface particles interact via beta(3)-integrin subunits; for example, L1-CAM mediates melanoma cell/melanoma cell and melanoma cell/endothelial cell interactions [24]. Therefore, L1-CAM can be indirectly engaged in the studied effect. We consider the problem of molecular mechanisms of phage-melanoma interaction still open and believe PF299 clinical trial that further investigations are needed. Models of in vitro studies allow investigating the direct effects of preparations on migrating cells. This brings us closer to understanding previously observed in vivo antimetastatic effects [13, 14]. The in vivo anticancer effects may result from an impact of the investigated preparations Crenigacestat on immunological systems, which has to be seriously considered. In vitro migration excludes the effect of complex mammalian immunology. Observations of the “”antimigratory”" effect of bacteriophages suggest that they are able to influence (at
least some) cancer cells directly. Previously we investigated the interactions of bacteriophage T4 with mammalian cells, observing an unexpected ability of the bacteriophage to bind weakly to melanoma cells in vitro. We selected bacteriophage HAP1, which was able to bind cancer cells more strongly. Importantly, HAP1 was also much more effective against melanoma metastases in vivo [13]. A mutation in the hoc gene that differentiates bacteriophage HAP1 and its parental strain T4 was found [14]. Nevertheless, in these studies we did not find any difference in the effects of T4 and HAP1 on melanoma migration in vitro. This may suggest that some immunological components are engaged in the activity of HAP1. This phage is different Sclareol (from
T4 phage) in, among other properties, the time and means of clearance from a mammalian organism, which may contribute to these observations. On the other hand, the difference between T4 and HAP1 interactions with melanomas may simply be undetectable in the types of tests conducted. We believe that our observations are of importance for any further attempts to use bacteriophage preparations in antibacterial treatment. To the best of our knowledge, there are no published data on the effect of bacteriophages on macrophage or lymphocyte (normal cell) migration in vitro. We also work on this issue and we hope to be able to present data in the future. It should be pointed out that bacteriophages constitute a strongly diversified group of microorganisms and our observations apply to Duvelisib mouse T4-like phages. Other types of bacteriophages (with different genetics and protein construction) must be investigated and analysed independently. As the risk of antibiotic-resistant hospital infections strongly affects cancer patients, we consider that such investigations are greatly needed.