Furthermore, only approximately one-third to a half of IgAN patients have increased IgA levels [1, 27, 28]. Thus, a structurally, immunologically, or physicochemically abnormal IgA1 molecule, such as Gd-IgA1, produced by IgAN patients, has been considered as a possible cause of glomerular IgA deposition. Indeed, serum Gd-IgA1 levels are elevated in IgAN patients where they are mainly regulated by
genetic and environmental factors [16, 20, 29]. However, the clinical association between Gd-IgA1 levels and their clinical manifestation has not been completely evaluated. It is notable that serum Gd-IgA1 levels correlated Selleck ARN-509 with severity of hematuria. In addition, the disappearance or improvement of hematuria after TSP correlated with a decrease in serum Gd-IgA1 levels. These findings indicate that formation of Gd-IgA1 and Gd-IgA1-containing
IC are key steps in the pathogenesis of IgAN, leading to glomerular deposition of these complexes and development of glomerular injury with subsequent hematuria [20]. However, specific serum Gd-IgA1 levels were still detected, even in patients who experienced complete remission after TSP. The absolute amounts of serum Gd-IgA1 were also independent of severity of hematuria before TSP. Rigosertib cell line Therefore, threshold levels of Gd-IgA1 that induce hematuria may differ among individuals. Notably, elevated levels of Gd-IgA1 have been reported also in healthy relatives of IgAN patients [29], suggesting heterogeneity of Gd-IgA1 itself for the induction of glomerular damages. The production site of nephritogenic Gd-IgA1
remains unclear, although there are some emerging clues. For example, we noted that hematuria in some IgAN patients improved after tonsillectomy alone and this improvement was associated with decreased serum Gd-IgA1 levels (Suzuki Y et al., unpublished data). We previously reported on an animal model of IgAN in which the find more mucosal activation of Toll-like receptor 9 (TLR9) was involved in IgAN pathogenesis [30, 31]. Furthermore, we reported that a single Histone demethylase nucleotide polymorphism of TLR9 was linked with IgAN progression in humans [30]. Another recent study demonstrated that IgAN patients whose serum IgA levels decreased to more than average after tonsillectomy alone (large ΔIgA) showed a significantly higher mRNA expression of TLR9 in the tonsils than IgAN patients with a smaller decrease (small ΔIgA) in these levels [32]. These findings suggest that nephritogenic Gd-IgA1 may be produced in the tonsils and that this production may involve TLR9 activation [33]. This conclusion is consistent with the observation that tonsillar TLR9 expression was elevated in IgAN patients whose serum Gd-IgA1 levels decreased significantly after tonsillectomy alone (Suzuki Y et al., unpublished data). Increased IgA-IC levels were found in a large number of IgAN patients [27, 34]. A significant number of IgAN patients have an IC that contains both IgA1 and IgG [19, 35].