Furthermore, core fucosylation is essential for integrin-mediated cell migration and signal transduction and plays a key role in the interaction between cells and extracellular matrix, thus affecting tumor metastasis. E. W. Easton et al [13] purified α5β1 integrin from human placenta and α3β1 integrin from the uterine epithelial cell
line, HCV29, and demonstrated that both integrins were more than 50% fucosylated. Zhao et al [14] found that knockout of the α1,6-fucose transferase gene (FT8) could prevent integrin α3β1-mediated cell migration and cell growth signals, suggesting that core fucosylation is required for the functions of integrin α3β1. Lewis y antigen is an oligosaccharide containing two fucose molecules and falls into the A, B, H, and Lewis blood type families. The role of Lewis y antigen as a cancer-associated
antigen in tumorigenesis and development gradually arouses more concern. We have previously demonstrated that the Lewis y antigen Selleck PFT�� is a part of the α5β1 and αvβ3 structures and high expression of Lewis y antigen and integrins α5β1 and αvβ3 can enhance the proliferative and adhesive abilities of cells [6, 15]. Furthermore, we have shown We have also previously shown that cell lines and clinical ovarian cancer specimens exhibiting increased expression of Lewis y antigens in integrins α5β1 and αvβ3 are more likely to exhibit a malignant phenotype [6, 15, 16]. Our studies have also shown that Lewis y antigen can increase the ability of α5β1 Blasticidin S and αvβ3 to bind their ligands, fibronectin (FN) and vitronectin (VN), thereby increasing the cells’ resistance to platinum drugs by enhancing cellular Selleck Tariquidar adhesion [6, 15, 17]. On the basis of this body of work, we retrospectively analyzed the expression of Lewis y antigen and integrin αvβ3 in
Methocarbamol the tissue specimens of patients resistant to platinum drugs and investigated their relationship with drug resistance. We found the rates of expression of Lewis y antigen and αv integrins in the resistant group were significantly higher than those in the sensitive group (P < 0.05); however, the expression rate of integrin β3 in the two groups was not significantly different. Multivariate analysis showed that the expression of Lewis y-antigen and integrin αv and the clinical stage of ovarian cancer were both independent drug resistance-related risk factors, suggesting that the detection of Lewis y antigen and integrin αvβ3 could play an important role in the prediction of ovarian cancer patients’ drug resistance, prognosis, and outcome. Correlation analysis showed that Lewis y antigen and integrin subunits αv and β3 in ovarian cancer tissues were highly expressed in ovarian cancer cells and their expression levels were positively correlated with each other. Dual-color immunofluorescence labeling indicated that Lewis y antigen and integrin αvβ3 were co-localized in ovarian cancer tissues, further confirming their correlation of expression.