The subjects were fitted with a chest HR transmitter and wrist mo

The subjects were fitted with a chest HR transmitter and wrist monitor recorder. HR was recorded, from the beginning of the session, using individual Polar RS400 (Polar? Vantage ABT-263 NV, Polar Electro Oy, Finland), and subsequently exported and analyzed using the Polar Pro-Trainer? software program (Polar Electro Oy, Finland). The subjects could not see their HR measurements during the experimental trial, because it could influence their perceived effort on the Borg and OMNI RPE scales. For this reason, a sticker was placed on each HR monitor. The experimental trial was divided into four stages: a warm-up (10 minutes in a seated position, with a cadence of 90�C100 RPM (revolutions per minute)), a main phase (35 minutes, where the subjects alternated between normal seated positions and seated and standing climb cycling, between 60�C80 RPM in climb techniques and between 80 �C 110 RPM in normal seated cycling).

Then, a cool down (5 minutes, with a cadence of 80�C100 RPM) in a seated position and, finally, stretching exercises, of the principal muscles used in the session off cycling. During the experimental trial, HR was recorded every 5 s. The participants were instructed to follow the directions of a qualified indoor cycling instructor, which included recommended frequencies of pedalling (RPM) in each phase of the session and recommended cycle resistance. The instructor provided feedback to help the subjects to regulate their intensity. Although the resistance of the cycle could be freely changed by the participants during the session, the study subjects had to follow the instructions about the resistance and the RPM indicated by the instructor.

The Borg 6�C20 RPE and the OMNI 0�C10 scales were used to assess perceived exertion. The RPE is a 15-point single-item scale ranging from 6 to 20, with anchors ranging from 6 ��No exertion�� to 20 ��Maximum exertion��. The OMNI 0�C10 scale has a category rating format that contains both pictorial and verbal descriptors positioned along a comparatively narrow numerical response range, 0�C10. Each pictorial descriptor is consistent with its corresponding verbal descriptor, from 0 ��Extremely easy�� to 10 ��Extremely hard��. Both RPE scales were positioned within sight in the indoor cycling room. The subjects were instructed to give an overall perception about how hard the exercise felt according to both RPE scales every five minutes, from the start to the end of the indoor cycling session.

These values were written on a record sheet which the subjects had on their handlebars. Before the measurements, subjects were asked to read instructions on how to use these scales. A familiarization period of two weeks (and a minimum of 3 sessions per week) prior Dacomitinib to the experimental trial was carried out to accustom the participants with the Borg and the OMNI RPE scales. The first session consisted of familiarization to the RPE scales.

, 2000 ) From a control perspective, it can be stated that chang

, 2000 ). From a control perspective, it can be stated that changes in central commands did this not lead to changes in APA time in the analyzed motor task. Therefore, one should remember that it was a rapid movement which differs from cyclic ones. However, Winstein et al. (1997) found that in classical tapping tasks, when more precise targeting independent of task difficulty was required, a cortical-subcortical loop composed of the contralateral motor cortex, intraparietal sulcus and caudate was much more activated. They showed, with a use of positron emission tomography (PET), that greater effort in performing a difficult task (smaller targets) recruits more motor planning areas. Recent studies showed that there is a specific modulation of neural network associated with the availability of time to plan the upcoming movement and motor difficulty.

One of them used brain-imaging (fMRI) to examine a simple motor task – moving a mouse cursor on a screen ( Boyd et al., 2009 ). Another examined step initiation in patients with Parkinson��s disease ( Jacobs et al., 2009 ). The same concerns the study by Bartucco and Cesari (2010) described earlier, which focused on motion capture experiments on ballet movements. It looks like in these experiments subjects used distinct control of APA duration and APA magnitude according to Fitts�� law. It is one of the limitation of our study that we did not observe changes in the central nervous system. An additional limitation is that we did not record muscle activity.

It is hard to estimate information processing but it can be guessed that the commands do not concern speed manifested in the velocity of a dart but the accuracy of aiming. Concentrating on accuracy does not have to lead to changes in force recruitment. That hypothesis is partly supported by Smits-Engelsman et al. (2002) who suggest fundamental differences in cyclic and discrete movements. They also claim that cyclic movements make a more cost-effective use of the recruited force, use less information-processing capacity and less change in force, then discrete ( Smits-Engelsman et al., 2002 ). This interesting hypothesis is worth considering and examining in future research. Whenever we optimize the speed-accuracy trade-off in specific movement by repetitions we can create a motor skill and perform the movement better and better. Then we start to act effortless and automatic.

Unfortunately, there is a lack of data concerning some applications of Fitts�� law in sports training. It is simply impossible to say if it is better to Brefeldin_A differentiate a distance or a target size during the process of gradual mastering of specific motor skills with repeated performance. From a physics point of view, controlling velocity seems to be the simplest way to perform a motor task. It may be more effective to change spatial constraints to achieve better results in high-performance sport.

Cronbach��s �� values for the seven

Cronbach��s �� values for the seven selleck chem Tofacitinib produced factors ranged from .42 to .51 and test-retest reliability values from .41 to .51. Confirmatory factor analysis Confirmatory factor analysis, using a different sample (n3=288) of athletes, was conducted to confirm the previously obtained factorial structure. The confirmatory factor analysis was conducted with a computer program Analysis of Moment Structures (AMOS; Arbuckle, 1997). The primary index used for model fit was the ��root mean square error of approximation�� (RMSEA), which is a measure of the mean discrepancy between the observed covariances and those implied by the model per degree of freedom. Values less than 0.05 are indicators of a good fit. Certain researchers consider 0.08 as an acceptable cut-off value, but certainly an RMSEA value above 0.

1 indicates a poor model fit. Two additional incremental fit indices are reported: TLI and CFI. The TLI, (Tucker-Lewis coefficient), belongs to the family of indices that compare the discrepancy of the specified model in comparison to the baseline model (Bentler & Bonett, 1980; Bollen, 1989). The typical range for TLI lies between 0 and 1, but it is not limited to that range. TLI values close to 1 indicate a very good fit. A value of TLI=0.9 is considered a cut-off value, above which there is an indication of a good model fit. The same criteria apply for the CFI (comparative fit index). The confirmatory factor analysis for the overall model gave an RMSEA value of 0.049, with TLI=0.892 and CFI=0.911, providing acceptance for the structure of the inventory.

Following the analysis for the total model, separate confirmatory factor analyses were performed for each factor (Table 3). Table 3 shows the fit indices of confirmatory factor analysis for the model fit of each individual factor. The RMSEA values for the factors activation, automaticity, and self talk are above the value of 0.1. Table 3 Confirmatory factor analysis of the subscales of the TOPS-CS (group 3=288 athletes) Discussion The purpose of this study was to examine the psychometric properties of the Competition Scale of the TOPS in Greek athletic population. The TOPS-CS is designed to assess the psychological strategies used by athletes in competition, thus giving valuable information to coaches and practitioners about the psychological parameters underlying athletic performance.

In the present study, results differentiate a lot depending on the athletes�� age group. In the first study, Drug_discovery for athletes aged 16�C20 years, exploratory factor analysis produced an acceptable eight factor structure, a result also found in other studies (Jackson et al., 2000; Taylor et al., 2000). The eight factors hypothesized to underlie the items were: self-talk, emotional control, automaticity, goal-setting, imagery, relaxation, activation and negative thinking. In the exploratory factor analysis, all factors were obtained.

Considering each swimmer individually, a positive correlation was

Considering each swimmer individually, a positive correlation was observed between the hip and CM values regarding velocity (ranging from 0.50 to 0.83), which is in accordance with Maglischo et al. (1987) in front crawl technique selleck screening library (values between 0.86 and 0.96, with a mean coefficient of 0.87). These data, associated with the obtained high digitize-redigitize reliability values, evidence that, although there is an associated error that should be taken into account, the hip reflects satisfactorily the CM motion in front crawl when swimming at moderate intensity. The velocity to time curve obtained for one swimmer for both CM and hip showed similar patterns of positive and negative accelerations as described in the literature (Maglischo et al., 1987; Craig et al.

, 2006): both CM and hip decelerated during the downsweep phases (that are coincident with the recovery of the opposite arm) and in the transition from one propulsive phase to another, and both body points accelerated during the catch, insweep and upsweep phases. Thus, coaches should incorporate specific training drills aiming to perform faster transitions between propulsive phases, as well as to finish the stroke at maximal arm velocity. It was also evident that swimmers choose a catch-up inter-arm coordination mode that is typical of moderate paces due to a long gliding phase (Schnitzler et al., 2008; Seifert and Chollet, 2009; Seifert et al., 2010). In fact, the existence of a discontinuity between the end of the propulsion of one arm and the beginning of propulsion of the other arm is typical of front crawl swimming at moderate intensities (Seifert and Chollet, 2009; Seifert et al.

, 2010). Thus, coaches should not advise swimmers to adopt superposition arm synchronization when implementing aerobic pace training series. Furthermore, it was also evidenced that the hip presents higher and lower forward velocity peaks magnitude compared to CM, as shown by Maglischo et al. (1987) for higher swimming intensities. Notwithstanding that the forward velocity and displacement of the hip and CM are similar, and the evidence that the IVV determination using the hip is reliable, allows multiple cycles to be evaluated and enables the assessment of fatigue (Holm��r, 1979; Maglischo et al., 1987), differences between hip and CM were found for the IVV. Such differences corroborates the literature (Figueiredo et al.

, 2009), and might be explained by the inter-segmental actions during the front crawl swimming cycle that frequently changes the CM position (Barbosa et al., 2003). In addition, the CM vmax and vmin values seem to be over and underestimated (respectively) by the hip values, as previously proposed by Psycharakis and Sanders (2009). In fact, when the arms in front crawl accelerate the body Batimastat mass, they simultaneously move backwards with respect to a body fix landmark refraining the acceleration of the CM.

Cohesion is understood as a ��dynamic process that is reflected i

Cohesion is understood as a ��dynamic process that is reflected in part by the tendency of a group to stick together and remain united in the pursuit of compound library its instrumental objectives and/or for the satisfaction of member affective needs�� (Carron et al., 1998). The conceptual model of Carron et al. (1998) consists of four dimensions: Group integration-Task (GI-T), Group integration-Social (GI-S), Individual attraction to the group-Task (ATG-T), and Individual attraction to the group-Social (ATG-S). To create profiles according to this construct, this study divides cohesion into task and social dimensions because these dimensions have been shown to have more differences with respect to performance (Leo et al., 2010a). Carron et al.

��s (2002) meta-analysis demonstrated the importance of determining whether social or task aspects were related to performance. Their work identified studies that used only two dimensions and hence demonstrated problems with the presentation of the four factors of cohesion (Heuz�� et al., 2006; Leo et al., 2012). Thus, in this study, we differentiate between task cohesion, which reflects the degree to which group members work together to achieve common goals, and social cohesion, which reflects the degree to which team members empathise with each other and enjoy the group fellowship (Carron et al., 1998; Carron and Eys, 2012). These two dimensions are generated by environmental, personal, leadership and team factors that affect the perception of cohesion and produce individual and collective results, such as an influence on performance (Carron and Eys, 2012; Heuz�� et al.

, 2006; Leo et al., 2010; Paskevich et al., 1999). Many studies have assessed players�� and coaches�� opinions of team members�� efficacy (Bandura, 1997; Chase et al., 1997; Lent and L��pez, 2002). Three main types of sports-related team efficacy (Beauchamp, 2007) are noteworthy: perceived coach efficacy reflects a trainer��s confidence in a player��s abilities to perform given tasks (Beauchamp, 2007; Chase et al., 1997); perceived peer efficacy in sports represents players�� beliefs in their teammates�� abilities to accomplish a task successfully (Lent and L��pez, 2002); and collective efficacy is a group��s shared belief in its joint ability to organise and execute the courses of action required to produce certain achievement levels (Bandura, 1997).

Players form a perception of efficacy through these aspects, which lead to knowledge, affective and behavioural consequences, such as Dacomitinib increasing or decreasing sport performance (Beauchamp, 2007; Watson et al., 2001). Numerous investigations have found a positive relationship between both psychological constructs��cohesion and perceived efficacy��and sport performance (Heuz�� et al., 2006; Kozub and McDonnell, 2000; Leo et al., 2010a; Paskevich et al., 1999; Ramzaninezhad et al., 2009; Spink, 1990; Myers et al., 2007).

We believe that with intervention this group of swimmers was inte

We believe that with intervention this group of swimmers was interested in learning the dynamics of the process, how to detect specific causes and reset new operational goals. They sought to organize and control their emotions and actions based on the correct interpretation of the causes that led them to the results obtained, according to ability, personal effort and difficulty of the task (Weiner, 1986). This way we expected to increase the internal locus of control in the diagnosis of the causes of error and how to use them for their own advantage (Vasconcelos-Raposo, 2001). In this sense, we lead athletes to better interpret the causes and learn how to use this information for their own benefit. These facts mediate expectations, emotions, motivation and behavior (DeCharms, 1976).

We were always concerned during the analysis of the data that the controllability of a closed task such as swimming was the responsibility of all of those involved, the technical team and the swimmer. This way we would help stabilize or improve the results throughout the swimming season (Biddle, 1993). We believe that the way swimmers interpreted or were led to interpret every swimming event positively affected the subsequent behavior and outcome. We can also state that the way the swimmers decided to define their objectives within our framework was influential in the results expected and achieved when compared to the results obtained with the second season in the absence of intervention / stimulation. These data confirm the importance of the chosen techniques in the context of competitive sport essentially when integrated with the model of intervention.

Its absence contributes to a possible lack of motivation and less commitment with goals, as well as possible lower cognitive and emotional self-control. The absence of information from assessments during the follow-up made the swimmers less aware and less objective regarding behavior constructing more subjective levels of action. For Webb and Sheeran (2005), regarding this matter, the study of objectives when proposed should be in a context of self-fulfillment in order to better understand its importance, as our proposal suggests. Only in this way will these reveal their interest and impact as we aimed to in this study.

Considering the fact that the swimmers came to set more realistic goals throughout the intervention period (taught to be defined) created a greater degree of compromise with training (attendance and intensity). This idea is reinforced by interviews held with the coach about the comparison between seasons. The coach��s planning was influenced by the quantity and quality of information available. Drug_discovery For this matter and in his opinion, the goal setting model lead him to take better decisions in managing the load of training and the negotiation / collaborative process in establishing goals and exercises (Weinberg et al., 1993).